44,985 research outputs found

    The equivalence of three techniques for estimating ground reflectance from LANDSAT digital count data

    Get PDF
    The equivalence of three separate investigations that related LANDSAT digital count (DC) to ground measured reflectance (R) was demonstrated. One investigator related DC data to the cosZ, where Z is the solar zenith angle, for surfaces of constant R. The second investigator corrected the DC data to the solar zenith angle of 39 degrees before relating to surface R. Both of these investigators used LANDSAT 1 and 2 data from overpass dates 1972 through 1977. A third investigator calculated the relation between DC and R based on atmospheric radiative transfer theory. The equation coefficients obtained from these three investigators for all four LANDSAT MSS bands were shown to be equivalent although differences in ground reflectance measurement procedures have created coefficient variations among the three investigations. These relations should be useful for testing atmospheric radiative transfer theory

    Characterizing the uncertainty in holddown post load measurements

    Get PDF
    In order to understand unexpectedly erratic load measurements in the launch-pad supports for the space shuttle, the sensitivities of the load cells in the supports were analyzed using simple probabilistic techniques. NASA engineers use the loads in the shuttle's supports to calculate critical stresses in the shuttle vehicle just before lift-off. The support loads are measured with 'load cells' which are actually structural components of the mobile launch platform which have been instrumented with strain gauges. Although these load cells adequately measure vertical loads, the horizontal load measurements have been erratic. The load measurements were simulated in this study using Monte Carlo simulation procedures. The simulation studies showed that the support loads are sensitive to small deviations in strain and calibration. In their current configuration, the load cells will not measure loads with sufficient accuracy to reliably calculate stresses in the shuttle vehicle. A simplified model of the holddown post (HDP) load measurement system was used to study the effect on load measurement accuracy for several factors, including load point deviations, gauge heights, and HDP geometry

    Comparisons among a new soil index and other two- and four-dimensional vegetation indices

    Get PDF
    The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in LANDSAT MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS 5 and MSS 6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation

    National Geodetic Satellite Program /NGSP/ Station Solutions

    Get PDF
    Results derived from short arc, orbital solution of twelve stations, PAGEOS networ

    Improvement in the geopotential derived from satellite and surface data (GEM 7 and 8)

    Get PDF
    A refinement was obtained in the earth's gravitational field using satellite and surface data. In addition to a more complete treatment of data previously employed on 27 satellites, the new satellite solution (Goddard Earth Model 7) includes 64,000 laser measurements taken on 7 satellites during the international satellite geodesy experiment (ISAGEX) program. The GEM 7, containing 400 harmonic terms, is complete through degree and order 16. The companion solution GEM 8 combines the same satellite data as in GEM 7 with surface gravimetry over 39% of the earth. The GEM 8 is complete to degree and order 25. Extensive tests on data independent of the solution show that the undulation of the geoidal surface computed by GEM 7 has an accuracy of about 3m (rms). The overall accuracy of the geoid estimated by GEM 8 is estimated to be about 4-1/4m (rms), an improvement of almost 1m over previous solutions

    Estimating total standing herbaceous biomass production with LANDSAT MSS digital data

    Get PDF
    Rangeland biomass data were correlated with spectral vegetation indices, derived from LANDSAT MSS data. LANDSAT data from five range and three other land use sites in Willacv and Cameron Counties were collected on October 17 and December 10, 1975, and on July 31 and September 23, 1976. The overall linear correlation of total standing herbaceous biomass with the LANDSAT derived perpendicular vegetation index was highly significant (r = 0.90**) for these four dates. The standard error of estimate was 722 kg/ha. Biomass data were recorded for two of these range sites for 8 months (March through October) during the 1976 growing season. Standing green biomass accounted for most of the increase in herbage, starting in June and ending about September and October. These results indicate that satellite data may be useful for the estimation of total standing herbaceous biomass production that could aid range managers in assessing range condition and animal carrying capacities of large and inaccessible range holdings

    Experimental Effervescence and Freezing Point Depression Measurements of Nitrogen in Liquid Methane-Ethane Mixtures

    Get PDF
    NASA is designing an unmanned submarine to explore the depths of the hydrocarbon-rich seas on Saturn's moon Titan. Data from Cassini indicates that the Titan north polar environment sustains stable seas of variable concentrations of ethane, methane, and nitrogen, with a surface temperature near 93 K. The submarine must operate autonomously, study atmosphere/sea exchange, interact with the seabed, hover at the surface or any depth within the sea, and be capable of tolerating variable hydrocarbon compositions. Currently, the main thermal design concern is the effect of effervescence on submarine operation, which affects the ballast system, science instruments, and propellers. Twelve effervescence measurements on various liquid methane-ethane compositions with dissolved gaseous nitrogen are thus presented from 1.5 bar to 4.5 bar at temperatures from 92 K to 96 K to simulate the conditions of the seas. After conducting effervescence measurements, two freezing point depression measurements were conducted. The freezing liquid line was depressed more than 15 K below the triple point temperatures of pure ethane (90.4 K) and pure methane (90.7 K). Experimental effervescence measurements will be used to compare directly with effervescence modeling to determine if changes are required in the design of the thermal management system as well as the propellers
    corecore